Search results for "thermal [radiation]"

showing 10 items of 1167 documents

The 3D structure of fabric and its relationship to liquid and vapor transport

2004

Polymeric carrier fabrics are commonly used in many industrial processes including manufacture of paper and board. Apart from acting as a carrier for the compressible porous material during the manufacturing process, the synthetic woven fabrics comprising mainly of poly ethylene terypthalate (PET) yarns, impart valuable product attributes, i.e. softness, bulk, absorbency, etc. in consumer products. The three-dimensional structure of the fabrics plays a critical role in deciding the manufacturing and energy efficiency as well as product end-use properties. X-ray micro computed tomography (X-CT) provides a non-intrusive technique to visualize and analyze the three-dimensional structure of por…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyChemistryPapermakingNanotechnologyThermal diffusivityTortuosityPermeability (earth sciences)Colloid and Surface ChemistryFluid dynamicsSDG 7 - Affordable and Clean EnergyDiffusion (business)Composite materialPorous mediumPorosityColloids and Surfaces A: Physicochemical and Engineering Aspects
researchProduct

Derivation of a Homogenized Two-Temperature Model from the Heat Equation

2014

This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]

01 natural sciencesHomogenization (chemistry)Heat capacity010305 fluids & plasmasTwo temperatureMathematics - Analysis of PDEsThermal nonequilibrium models0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalingMSC 35K05 35B2776T05 (35Q79 76M50)35K05 35B27 76T05 (35Q79 76M50)MathematicsNumerical AnalysisHomogenizationPartial differential equationInfinite diffusion limitApplied MathematicsHeat equationMathematical analysis010101 applied mathematicsComputational MathematicsThermal non-equilibrium modelsModeling and SimulationVolume fractionHeat equationAnalysisAnalysis of PDEs (math.AP)
researchProduct

Migration kinetics of ion-implanted beryllium in glassy carbon

2008

Abstract Migration kinetics of low-concentration implanted 7 Be in glassy carbon has been studied by the modified radiotracer technique at temperatures 1285 °C and 1340 °C. The annealed sample concentration profiles show two distinctive components: (i) Main profile broadening assigned to beryllium trapping in defects during annealing. (ii) Tail parts on both sides of the profile maximum related to faster migration. Of the latter the profile representing bulk diffusion lies on the region free of defect influence and is well described by concentration-independent diffusivity. The features of the concentration profile broadening towards the sample surface indicate partial Be trapping in defect…

010302 applied physicsAnnealing (metallurgy)Mechanical EngineeringAnalytical chemistrychemistry.chemical_elementDiamond02 engineering and technologyGeneral ChemistryTrappingengineering.materialGlassy carbon021001 nanoscience & nanotechnologyThermal diffusivity01 natural sciencesElectronic Optical and Magnetic MaterialsIonchemistryImpurity0103 physical sciencesMaterials ChemistryengineeringElectrical and Electronic EngineeringBeryllium0210 nano-technologyDiamond and Related Materials
researchProduct

Batch-to-Melt Conversion Kinetics in Sodium Aluminosilicate Batches Using Different Alumina Raw Materials

2016

The batch-to-melt conversion in batches of sand, soda ash and corundum (C), alumina spinel (A), boehmite (B), or gibbsite (G) as Al2O3 carrier are studied using thermal analysis, X-ray diffraction, and 27Al nuclear magnetic resonance spectroscopy. Laboratory-scaled batches are either heated continuously or quenched from 1600°C in a series of increasing dwell times. The results show that the conversion from the raw materials to the fresh melt proceeds in two kinetic stages. During the first stage (3–5 min), fast conversion of nearly 95% by mass occurs and the conversion coefficient increases in the order G < C ≈ A < B. The second stage is controlled by the slow dissolution of intermediate cr…

010302 applied physicsBoehmiteMaterials scienceSpinelAnalytical chemistryMineralogyCorundum02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesCristobalitechemistry.chemical_compoundchemistry0103 physical sciencesengineeringGeneral Materials Science0210 nano-technologyThermal analysisDissolutionGibbsiteSodium aluminosilicateInternational Journal of Applied Glass Science
researchProduct

The effects of thermal treatment on structural, morphological and optical properties of electrochemically deposited Bi2S3 thin films

2017

Abstract Thin films of bismuth sulfide (Bi 2 S 3 ) have been electrochemically deposited on indium–doped tin oxide substrates from aqueous solutions of Bi(NO 3 ) 3 , ethylene diamine tetraacetic acid (EDTA) and Na 2 S 2 O 3 . The structural properties of the films were characterized using X–ray diffraction and high–resolution transmission electron microscopy analyses. The film crystallizes in an orthorhombic structure of Bi 2 S 3 along with metallic bismuth. Thermal annealing of the prepared film in sulfur atmosphere improves its crystallinity and cohesion. The band gap values of the deposited film before and after annealing at 400 °C were found to be 1.28 and 1.33 eV, respectively.

010302 applied physicsMaterials scienceAnnealing (metallurgy)Band gapInorganic chemistryMetals and Alloyschemistry.chemical_element02 engineering and technologySurfaces and InterfacesThermal treatment021001 nanoscience & nanotechnologyTin oxide01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBismuthCrystallinitychemistryChemical engineeringTransmission electron microscopy0103 physical sciencesMaterials ChemistryThin film0210 nano-technologyThin Solid Films
researchProduct

Zn-substituted iron oxide nanoparticles from thermal decomposition and their thermally treated derivatives for magnetic solid-phase extraction

2020

Abstract Controlled thermal decomposition of zinc and iron acetylacetonates in the presence of oleic acid and oleylamine provided surfactant-capped magnetic nanoparticles with narrow size distribution and the mean diameter of ≈15 nm. The combined study by XRD, XRF and Mossbauer spectroscopy revealed three important features of the as-prepared nanoparticles. First, the actual ratio of Zn:Fe was considerably lower in the product compared to the initial ratio of metal precursors (0.14 vs. 0.50). Second, a pure stoichiometric Zn-doped magnetite system, specifically of the composition Zn0.37Fe2.63O4, with no signatures of oxidation to maghemite was formed. Third, Zn2+ ions were distributed at bo…

010302 applied physicsMaterials scienceInorganic chemistryThermal decompositionMaghemitechemistry.chemical_element02 engineering and technologyThermal treatmentZincengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryOleylamine0103 physical sciencesengineeringMagnetic nanoparticles0210 nano-technologyIron oxide nanoparticlesMagnetiteJournal of Magnetism and Magnetic Materials
researchProduct

Evaluation of Vertical Fatigue Cracks by Means of Flying Laser Thermography

2019

The present paper proposes a new procedure to analyze the temperature field distribution during Flying Laser Spot and Laser Line Thermographic scanning (FLST, FLLT) of metallic components, in order to detect vertical surface cracks. The methodology exploits the changes in the temperature field produced by a vertical crack, acting as a barrier towards heat diffusion, when the laser approaches the defect. A number of small regions of interests (ROIs) is placed nearby and around the laser source. The average temperature from each ROI is then monitored during the laser scanning. Vertical cracks can be detected by analyzing and comparing the temperature fluctuations from each ROI when the laser …

010302 applied physicsMaterials scienceLaser scanningField (physics)Laser thermographyMechanical EngineeringAcousticsNon-destructive testingchemistry.chemical_elementLaser01 natural sciencesIR thermographylaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchinechemistryMechanics of MaterialsAluminiumlaw0103 physical sciencesSolid mechanicsThermographyEmissivityHead (vessel)Thermal analysis010301 acousticsJournal of Nondestructive Evaluation
researchProduct

Electrical and thermomechanical properties of CVI- Si3N4 porous rice husk ash infiltrated by Al-Mg-Si alloys

2017

Abstract The effect of following processing parameters on the electrical and thermomechanical properties of Al/Si3N4 deposited silica composites was investigated using the Taguchi method and analysis of variance (ANOVA): infiltration temperature and time, atmosphere, effect of Si3N4 coating, porosity content in the preforms, and magnesium content in the alloy. The contributions of each of the parameters to modulus of elasticity, electrical resistivity, coefficient of thermal expansion (CTE), and thermal diffusivity of the resulting composites were determined. The maximum modulus of elasticity and electrical resistivity of obtained composites were 265 GPa, and 1.37 × 10−3 Ω m, respectively. …

010302 applied physicsMaterials scienceMechanical EngineeringAlloyMetals and AlloysYoung's modulus02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyThermal diffusivity01 natural sciencesThermal expansionsymbols.namesakeTaguchi methodsCoatingMechanics of MaterialsElectrical resistivity and conductivity0103 physical sciencesMaterials ChemistryengineeringsymbolsComposite material0210 nano-technologyPorosityJournal of Alloys and Compounds
researchProduct

Properties of Nanosized Ferrite Powders and Sintered Materials Prepared by the Co-Precipitation Technology, Combined with the Spray-Drying Method

2016

Cobalt and nickel ferrites powders are synthesized by the co-precipitation technology, combined with the spray-drying method. The crystallite size, specific surface area (SSA), magnetic properties of synthesized products are investigated. All the synthesized ferrites are nanocrystalline single phase materials with crystallite size of 5-6 nm, the SSA of 80-85 m2/g and the calculated particle size of 13-15 nm. After spray-drying granules of the size up to 10 μm are obtained. After thermal treatment at 550 and 950 °C SSA decreases to 40-50 m2/g and 20-22 m2/g, respectively. The saturation magnetization at these temperatures increase from 17 to 40 emu/g for NiFe2O4 and from 51 to 77 emu/g for C…

010302 applied physicsMaterials scienceMechanical EngineeringMetallurgySintering02 engineering and technologyThermal treatment021001 nanoscience & nanotechnology01 natural sciencesNanocrystalline materialChemical engineeringMechanics of MaterialsSpray dryingSpecific surface area0103 physical sciencesFerrite (magnet)General Materials ScienceParticle sizeCrystallite0210 nano-technologyKey Engineering Materials
researchProduct

Long-term moisture absorption and durability of FRP pultruded rebars

2021

Abstract Up to 15-years long moisture diffusion into carbon, glass, and aramid fiber reinforced plastic (FRP) rebars is studied. To eliminate uncertainties in identification of the radial and axial diffusivities, a successive methodology for determination of the diffusion coefficients is proposed. The concept of apparent diffusivity taking into account anisotropy and edge effects is extended to cylindrical samples. The ratio of the axial and radial diffusivities is the lowest for carbon (3) and the highest for glass (81) FRP rebars. Durability performance of the rebars is estimated by monitoring their interlaminar shear strength (ILSS). Long-term exposure of FRP rebars in a humid environmen…

010302 applied physicsMaterials scienceMoisture02 engineering and technologyFibre-reinforced plastic021001 nanoscience & nanotechnologyThermal diffusivity01 natural sciencesDurabilityAramidPultrusion0103 physical sciencesDiffusion (business)Composite material0210 nano-technologyAnisotropyMaterials Today: Proceedings
researchProduct